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Introduction
Upon transmission to a new host, HIV-1 disseminates to the 
lymph nodes within days and to the bloodstream and through-
out the human body within 1 to 2 weeks (1–4). In this process, 
HIV establishes reservoirs throughout the body including in the 
CNS, lymphoid tissues (spleen, thymus, lymph nodes, gut-as-
sociated lymphoid tissue), bone marrow, lungs, kidneys, liver, 
adipose tissue, gastrointestinal tract, and genitourinary systems 
(5). The persistence of replication-competent HIV in these ana-

tomical sites, even in the setting of longstanding, potent antiret-
roviral therapy (ART) that suppresses HIV replication, is the 
main barrier to curing HIV(6).

Despite extensive studies in humans (5, 7–18), much remains 
unclear about HIV reservoirs that persist during ART (19–23). In 
part, this is because of technical limitations and limited access to 
appropriately collected tissues for such studies. In general, most 
studies aiming to characterize HIV DNA reservoirs in persons with 
HIV (PWH) have necessarily focused on blood, with a few other 
compartments that are relatively easy to sample such as the gut, 
through endoscopy (5, 10, 11, 24), the genital tract, through geni-
tal secretions (12, 25–30), or the CNS, through cerebrospinal fluid 
(CSF) (31–37). Of note, one study in PWH diagnosed with cancer 
allowed the analysis of HIV reservoirs in selected anatomic tissues 
collected during autopsy (38, 39). More recently, De Scheerder et 
al. investigated the origins of HIV rebound, and although this study 
was limited by the number of anatomical sites, they showed that 
viral rebound originated from diverse cellular and tissue reservoirs 
(40). To address tissue availability, a perimortem observational 
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HIV DNA levels. Overall, HIV DNA levels varied in sampled 
blood and tissues from approximately 0–658.8 copies/106 cells 
(median = 55.9, IQR: 22.9–126.5) (Supplemental Table 2, Figure 
2F, and Figure 3). As expected, HIV DNA levels were lowest in 
CNS samples varying from a range of 0–4.6 copies/106 cells in 
the occipital lobe to 1.8–33.6 copies/106 cells in the frontal lobe. 
Although the sample size was small, we detected no discernible 
difference in HIV DNA levels in tissues between the participants 
who interrupted ART and those who did not (P > 0.05).

Defective proviruses (HIV DNA). Across all samples from all 
participants, we recovered 676 single-genome FL env sequenc-
es (Supplemental Table 2). Hypermutated and otherwise defec-
tive (i.e., nonintact) proviruses (FL env) accounted for 10.5% of 
all sequences (71 of 676), varying from 0%–18.3% of all FL env 
sequences in a given tissue (Supplemental Table 2 and Figure 
2B). Nonintact FL env sequences were excluded from further 
analyses, resulting in 605 evaluated intact FL env sequences 
(55–152 sequences/participant, with a median of 7 sequences/
site; IQR: 5–9). Overall, we found evidence that the proportion 
of genetically intact FL env variants varied between anatomical 
compartments (P = 0.016); however, the pattern of this varia-
tion was not consistent across participants (P = 0.96). To fur-
ther investigate this, the 28 compartments were collapsed to 11 
semirelated categories (blood plasma, cardiac serum, gut, CNS, 
kidney, liver, lymphoid, pancreas, PBMC, pericardial adipose, 
and genital tract), and we still did not detect a pattern. We also 
found weak evidence for a difference in the proportion of intact 
FL env variants across participants (P = 0.04), but this associa-
tion was weakened further after adjusting for anatomical com-
partment (P = 0.27) and anatomical compartment category (P = 
0.051). The prevalence of intact FL env variants for each partic-
ipant and anatomical compartment is presented in Figure 2 and 
Supplemental Table 2.

Viral diversity and clonality. Viral diversity of HIV RNA pop-
ulations in blood and HIV DNA populations in tissues varied 
between tissues across participants and across tissues within 

research cohort, called the Last Gift, was developed and enrolled 
PWH diagnosed with a terminal illness from a non-HIV condition. 
Participants consented to blood sampling before death and donat-
ed their bodies for rapid autopsy after death (41–43). This allowed 
us to collect antemortem blood and postmortem tissues across 28 
anatomical compartments from 6 participants. Postmortem tis-
sues were collected within 6 hours of death for maximal preserva-
tion of tissue and viral integrity (43). In the Last Gift cohort, some 
participants decided that they no longer wanted to continue their 
ART in the days and weeks before death. This provided the oppor-
tunity to observe and characterize rebounding viral populations in 
blood and compare them with viral populations found in tissues.

To characterize the HIV reservoirs in collected specimens, we 
combined new technologies that could deep sequence near–full-
length (near-FL) env HIV genomes and sensitively quantify HIV 
DNA (44, 45) using established molecular epidemiology inference 
methods to assess the viral diversity, divergence, predicted cellu-
lar tropism, replication competence, compartmentalization, and 
migration across the human body.

Results
Cohort. The design of the study is summarized in Figure 1. This 
study evaluated 6 male participants (see Supplemental Table 1 and 
Supplemental Figure 1; supplemental material available online with 
this article; https://doi.org/10.1172/JCI134815DS1) whose median 
age at the time of death was 57.5 years (range: 52–72 years). All par-
ticipants initiated ART during chronic infection and were virally 
suppressed for a mean of 7.5 years before enrolling in the Last Gift 
study (range: 3–14 years). Two participants, LG01 and LG04, vol-
untarily interrupted ART 53 days and approximately 70 days before 
death, respectively. The last HIV RNA blood plasma levels before 
death for LG01 and LG04 were 280 copies/mL and 48,000 cop-
ies/mL, respectively. Participants LG03, LG05, LG06, and LG08 
had undetectable HIV RNA in blood plasma (<20 copies/mL) until 
death and at the time of the autopsy. The median CD4+ T cell count 
before death was 338/mm3 (range: 174–868/mm3).

Figure 1. Flow diagram. Six participants enrolled 
in the Last Gift cohort (n = 2 participants who 
stopped ART; n = 4 participants who remained 
virally suppressed on ART until death) were includ-
ed in this study. (1) Premortem blood plasma (n = 2 
participants) and PBMC samples (n = 6 partici-
pants) were collected before death, and tissues 
were collected during the rapid autopsy procedure. 
(2) HIV RNA and DNA were extracted from blood 
plasma and PBMCs and tissues for quantification 
of HIV DNA/RNA (ddPCR). (3 and 4) HIV FL enve-
lopes were sequenced via single-genome ampli-
fication and sequencing. Intact FL env sequences 
from all samples were used to (5) characterize the 
HIV populations within each compartment and 
in blood, (6) assess viral dispersal across tissues 
using Bayesian phylodynamic models, and (7) 
evaluate factors associated with viral dispersal.
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Tamura-Nei 93 (TN93) distance (46) of 0.015 for LG01 and 0.001 
for LG04. Overall, viral diversity differed significantly across par-
ticipants (P = 0.057) but not across tissues (P = 0.51); however, 
our power to detect differences across tissues was poor due to the 

participants (Figure 2E, Supplemental Table 2, and Supplemental 
Figure 2). In participants who decided to stop therapy, most of the 
rebounding intact HIV RNA in blood (65% and 80% of variants) 
was more than 99% identical, with the mean pairwise nucleotide 

Figure 2. Characteristics of the HIV populations within each compartment. Scatter dot plots sorted by sampled compartment and colored by participants with 
the y axis showing (A) the total number of sequences; (B) the proportion of intact sequences; (C) the proportion of nearly identical sequences (any sequences with 
≥99% nucleotide identity with at least 1 other sequence from the same participant); (D) the proportion of identical sequences (100%); (E) the pairwise genetic 
distance between sequences; and (F) the levels of HIV DNA. The pairwise genetic distance between sequences from a compartment was measured using the 
TN93 algorithm (46). HIV DNA levels were quantified by ddPCR. Copy numbers were calculated as the mean of 3 replicate PCR measurements and normalized to 1 
million cells, as determined by RPP30 assay (total cell count) (94, 95). See Methods for details. PIDs, participant identifiers.
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We also found evidence of identical intact FL env proviruses 
within and across tissues. For example, monoclonal FL env popu-
lations (100% identical) were found in ileum (3 of 3 intact FL env 
sequences sampled) in LG03; jejunum (7 of 7) in LG04; and testes 
(6 of 6) in LG06. We also found identical FL env sequences across 
compartments, with LG03 having 30 identical intact envelopes 
recovered from 8 anatomical compartments and LG04 having 14 

large number of compartments and small number of participants. 
Considering this, we also looked at individual tissue comparisons 
with blood plasma HIV RNA populations and found that viral 
diversity was overall higher for all HIV DNA in tissues, but the 
higher viral diversity was only significant for prostate (P = 0.046), 
rectum (P = 0.045), right colon (P = 0.013), spleen (P  = 0.013), 
and occipital cortex (P = 0.006).

Figure 3. HIV DNA levels in compartments for each participant. HIV DNA levels were quantified by ddPCR. Copy numbers were calculated as the mean 
of 3 replicate PCR measurements and normalized to 1 million cells, as determined by RPP30 assay (total cell count) (94, 95). See Methods for details. The 
dots and horizontal bars represent the mean and range (minimum and maximum) of the HIV DNA levels.
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words, the differences across compartments varied according to 
participant, with no consistent clonality trends observed across 
tissues with or without sustained viral suppression.

Viral tropism and repopulation. HIV DNA populations in ante-
mortem PBMCs and postmortem tissues were predominantly X4 
tropic, based on genotropism analysis for 4 participants (LG01, 
84%; LG03, 75.5%; LG05, 78.2%; and LG06, 54.5%), where-
as X4-tropic proviruses accounted for only 14.9% and 6.6% of 
sequences obtained from LG04 and LG08, respectively (Supple-
mental Table 2 and Supplemental Figure 5). Next, we evaluated 
tissue repopulation during rebounding viremia in the 2 partici-
pants who voluntarily decided to interrupt their therapy.

identical intact envelopes from 5 tissue compartments. We also 
found a large, nearly identical population (≥99% identical) of 25 
FL env proviruses sampled across 10 compartments in partici-
pant LG08 (Figure 4 and Supplemental Figure 4). The proportion 
of identical FL env sequences varied significantly across partici-
pants (P < 0.01), with the following proportions of identical FL 
env variants throughout the body: LG01 (21 of 75, 28%); LG03 
(54 of 113, 48%); LG04 (42 of 152, 28%); LG05 (14 of 55, 25%); 
LG06 (19 of 104, 18%); and LG08 (25 of 106, 24%). Although the 
proportion of identical FL env sequences differed significantly 
across compartments, we also detected a modification of effect 
between participant and compartment (P < 0.001). In other 

Figure 4. ML phylogenies and clonal pop-
ulations (FL envelope) for 2 participants 
who either stopped ART or remained 
virally suppressed on ART. IQ-TREE (97) 
was used to estimate phylogenies for 
the FL HIV env sequences obtained from 
premortem blood plasma and tissues and 
from PBMCs collected during rapid autop-
sy. (A) ML phylogeny for participant LG01, 
who stopped therapy. (B) ML phylogeny 
for participant LG03, who remained 
virally suppressed. Tips are colored by 
compartment as in the legend. The size 
and distribution of nearly identical FL env 
populations (99% identical, populations 
of at least 3 identical proviruses) for each 
participant are presented in the middle 
of each tree. Colors represent the tissues 
described in the key. For LG01, nearly 
identical FL env populations including HIV 
RNA viruses sampled in blood plasma 
during viral rebound are marked with an 
asterisk. See also Supplemental Figure 4 
for data on the 4 remaining participants.
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For participant LG04, who stopped ART more than 2 months 
before his death, his last HIV RNA level in blood plasma before 
death was 48,000 copies/mL. The rebounding HIV RNA was 
100% intact in env and nearly clonal (10 of 10 intact, nearly iden-

tical [≥99% identity] FL env proviruses), and 80% of the variants 
were R5 tropic (Supplemental Figures 4 and 5). Interestingly, we 
also found identical R5-tropic FL env sequences in the HIV DNA 
population in antemortem PBMCs (17 of 23 sequences) and across 

Figure 5. Lineage dispersal events between compartments. The circle size is proportional to HIV DNA levels (or RNA for plasma) in each compartment. 
The thickness of the arrows corresponds to the average number of inferred migration events between compartments. Only transition events between 
locations for which the adjusted BF was 3 or higher (at least positive evidence) are shown.
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Figure 6. Proportion of supported transition events between compartments for 2 participants who either stopped ART or remained virally sup-
pressed on ART. (A) Data for the participant who stopped ART. (B) Data for the participant who remained virally suppressed on ART. Sankey plot shows 
the proportion of transition events between locations for which the adjusted BF was 3 or higher (at least positive evidence). The adjusted BF support 
for each transition type is given next to the corresponding color. The source locations are depicted on the left side of the plots and the destination loca-
tions on the right side. See also Supplemental Figure 6.
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Predictors of viral dispersal. We next used a generalized linear 
model (GLM) extension of the discrete phylogeographic model to 
determine whether the number of proviruses, viral diversity, pro-
portion of X4-tropic viruses, and viral divergence between com-
partments are associated with potential dispersal rates. We first 
assessed collinearity between all the factors evaluated and found 
that all correlation coefficients were less than 0.8. For participants 
LG03, LG04, and LG06, the model consistently revealed strong 
evidence that viral migration was associated with limited diver-
gence between the source and recipient compartments (respec-
tive adjusted BFs = 389.7, 54.4, and 1690.4; Supplemental Figure 
7). For LG03 and LG04, there was also evidence of an association 
between the transition rate and greater viral diversity in the recipi-
ent compartment (BFs = 373.9 and ≥1.5 × 104, respectively). Final-
ly, for LG03 only, we noted a positive association between a lower 
proportion of X4-tropic viruses in the source compartment and 
viral dispersal (BF = 5.8). For participants LG01, LG05, and LG08, 
we found no evidence that any of the tested factors were associat-
ed with viral dispersal (Supplemental Figure 7).

Discussion
Understanding how HIV populates tissues throughout the human 
body is crucial for the development of strategies to clear or other-
wise lock down these reservoirs (47–49). Such investigations have 
been hampered by limitations in technology and access to fresh 
sampling of tissues throughout the body. This study used samples 
and data from 6 participants in a perimortem cohort (Last Gift) 
of altruistic PWH who provided blood samples before they died 
and their whole bodies immediately after death. Given the fresh-
ness of samples, viral populations probably remained intact, so 
virologic data were generated and analyzed using state-of-the-art 
methods. The main findings of this study were as follows: (a) large, 
clonal, intact HIV RNA populations emerged in blood plasma after 
cessation of ART and repopulated tissues throughout the body; (b) 
multiple sites could act as hubs for dissemination of HIV within 
the host, predominately in the blood, gut, and lymph nodes; (c) 
viral exchanges occurred within CNS areas and between the CNS 
and blood; (d) viral dynamics were associated with low HIV diver-
gence between sites and high HIV diversity at the recipient site. 
Together, these data provide insights into how HIV populates res-
ervoirs across the human body.

Previous studies showed that lymphoid tissues (e.g., spleen, 
thymus, lymph nodes, gut-associated lymphoid tissue) are the 
sites with the highest level of viral replication during active 
infection, and HIV DNA can be readily cultured from lymphoid 
tissues after years of treatment (5). HIV-infected cells have also 
been found in the CNS, lungs, kidneys, liver, adipose tissue, 
genitourinary tract, and bone marrow (5, 50–53). In agreement 
with these observations, we found intact FL HIV-1 env through-
out the 28 anatomic compartments sampled from 6 participants 
of the Last Gift cohort. It was interesting that participant LG03 
had very high levels of HIV DNA in his pancreas (391.5 gag cop-
ies/106 cells [329.2–453.7]), which is also where his terminal 
cancer occurred. Since T cells infiltrate tumor microenviron-
ments, it is possible that the resident tumor attracted HIV-infect-
ed T cells (54). More tumor tissues will need to be evaluated to 
confirm this observation.

almost all other sampled tissues collected postmortem, including 
those from lymph nodes, the genital tract, and gut tissues (Supple-
mental Figure 4). Although we cannot be sure of the origin of the 
rebounding R5-tropic population because antemortem samples 
were only available for PBMCs and blood plasma, this observation 
strongly suggests that many tissue reservoirs were repopulated by 
R5-tropic virus during rebound.

Participant LG01 stopped ART 53 days before his death, and 
his last HIV RNA level in blood plasma before death was 280 cop-
ies/mL. Again, the rebounding HIV RNA population was 100% 
intact (17 of 17) and predominantly clonal (13 of 17 intact, near-
ly identical [≥99% identity] FL env). Phylogenetic analyses also 
revealed a large, nearly identical FL env population of 20 X4-tropic 
proviruses in postmortem gut (n = 5), PBMCs (n = 4), prostate (n = 
3), and blood plasma (n = 8) (Figure 4 and Supplemental Figure 5).

Viral dispersal and repopulation. As expected, all sequences 
clustered by participant when combined in a single phylogeny 
(Supplemental Figure 3), and using phylogenetic trait (i.e., ana-
tomical site) association measures, we found evidence of viral 
compartmentalization by anatomical site in all 6 participants (P 
< 0.01) (Supplemental Table 3). Discrete phylogeographic models 
showed various patterns of viral dispersal (Figures 4 and 5; only 
transition events between locations for which the adjusted Bayes 
factor [BF] of 3 or higher are shown).

Among participants who remained virally suppressed (LG03, 
LG05, LG06, and LG08), the majority of transition events orig-
inated from lymph nodes and gut tissues (Figures 5 and 6 and 
Supplemental Figure 6). We also found strong evidence for viral 
dispersal from lymph nodes to prostate in participant LG03 (BF 
= 568) and from rectum to seminal vesicles in participant LG08 
(adjusted BF = 74). Interestingly, there was also positive support 
for viral transitions from PBMCs to frontal lobes in participants 
LG05 (adjusted BF = 11) and LG08 (adjusted BF = 5.5).

Among the participants who stopped ART (LG01 and LG04), 
we sequenced FL env from HIV RNA from blood plasma collect-
ed antemortem during viral rebound (HIV RNA levels of 13,500 
copies/mL and 48,000 copies/mL, respectively). For  participant 
LG01, we found strong evidence of viral dispersal from PBMCs for 
all transition events (BFs ≥20) toward gut sites, prostate, spleen, 
and blood plasma (adjusted BFs = 449.7, 62, 27, and 22.7, respec-
tively). There was also good support (BFs ≥10) for transition 
events from blood plasma toward lymph nodes (adjusted BF = 
16.6) and liver (adjusted BF = 10.3) and from liver toward lymph 
nodes (adjusted BF = 11.8). We also found positive support for viral 
migration from the frontal lobe toward PBMCs (adjusted BF = 3.9) 
and from lymph nodes toward the frontal lobe (adjusted BF = 10.4) 
(Figures 5 and 6). For participant LG04, we found that 9 sourc-
es of viral migration were strongly supported (BFs ≥20), includ-
ing migration from blood plasma toward gut tissues and intense 
viral exchanges between the sampled gut sites (Figure 5 and Sup-
plemental Figure 6). Interestingly for participant LG04, we also 
found evidence of bidirectional transition events within the CNS, 
from the occipital lobe toward the frontal lobe (adjusted BF = 25.4) 
and from the frontal lobe toward the occipital lobe (adjusted BF = 
10.1). The lack of dominance of particular transition types shows 
that a diverse set of anatomical compartments can act as the 
source of reservoir virus.



The Journal of Clinical Investigation   C L I N I C A L  M E D I C I N E

1 7 0 7jci.org   Volume 130   Number 4   April 2020

were more homogenous than HIV DNA populations in tissues in 
the 2 participants who stopped therapy (P = 0.025). Interestingly, 
when participant LG04 stopped ART, he had an asymptomatic 
rebound of a large, intact, nearly identical R5-tropic HIV RNA 
population (FL env) in the blood. This population was identical to 
a HIV DNA population seen in PBMCs antemortem. After death, 
we found identical FL env sequences in tissues throughout the 
body including in lymph nodes, the genital tract, and gut tissues. 
Similarly, participant LG01 had rebound viremia with an intact, 
nearly identical X4-tropic population, and we found identical 
FL env sequences in the gut, PBMCs, and prostate. Although not 
conclusive, because we did not sample tissues before the partic-
ipants stopped ART, this strongly suggests that the rebounding 
HIV population in blood plasma was the source of viral replen-
ishment in tissue reservoirs. It also supports the notion that pre-
venting HIV rebound in the blood may allow for ART-free remis-
sion, like what was observed in Timothy Brown and the London 
patient, when their previously HIV-susceptible circulating CD4+ 
T cells were replaced by bone marrow transplantation of CD4+ T 
cells that were no longer susceptible to HIV infection because of 
the CCR5 32Δ deletion (67, 68).

Our study has a number of limitations. The main limitation 
is the small number of participants and, especially, the fact that 
only 2 participants stopped ART. Nonetheless, it allowed us 
to observe the population of tissue reservoirs from the blood 
during rebound viremia. Another limitation is that the partici-
pants were all in the process of dying, which may limit the gener-
alizability to healthy PWH. Also, this study, like others (69, 70), 
focused on the HIV env gene, which has the greatest amount of 
molecular diversity and evolution of all coding regions (71–76), 
but we acknowledge that by sequencing only the env region, we 
may have incorrectly inferred that some viruses intact in the env 
coding region were replication competent, when they may have 
had defects in other genome regions. Further, the study found 
many identical HIV DNA env single genomes, consistent with 
previous reports (77–80), but we did not directly assess cellular 
clonal expansion, which is thought to be an important mecha-
nism for HIV persistence (81–83). However, others have shown 
that multiple identical env sequences in proviruses provide a 
strong indication for clonal expansion (84, 85). Sequencing a 
near-FL proviral genome (86–88) would increase the sensitivity 
of the analyses of intactness and clonality, but these approaches 
require a high cellular input that may limit the ability to explore 
reservoirs such as the CNS. Therefore, we are confident that 
our approach provided a good surrogate for the extensive anal-
ysis of HIV reservoirs. Further, we did not perform phenotypic 
testing of CCR5 tropism, and every participant in our study had 
X4-tropic virus by genotypic analysis. This is probably because 
participants were infected for a long time before enrollment in 
the study (89) and emphasizes that individuals with longstand-
ing HIV infection are unlikely to benefit from measures focus-
ing only on CCR5-tropic viruses, as was the case for the 2 PWH 
who received CCR5-mutated bone marrow transplants and have 
been cured of HIV so far (68, 90). Finally, we cannot exclude 
the possibility of blood T cell contamination in tissues obtained 
during autopsy. This is likely to have a small impact on our anal-
ysis, given the small size of capillaries compared with overall 

Consistent with other reports that investigated blood from 
PWH (55–57), our study found various proportions of identical FL 
env sequences in PBMCs (varying from 19% [CI 95%: 4%–46%] 
to 81%[CI 95%: 54%–96%] for LG08 and LG01, respectively). 
We also found identical FL env sequences in various tissues (e.g., 
ileum and jejunum for LG03 and LG04) and across multiple tis-
sues. This observation could be explained either by infection of 
susceptible cells at multiple sites by monoclonal HIV RNA, as 
seen in LG04 during rebound viremia, or infection of cells that 
clonally expanded at one site and then migrated to a different 
site. These scenarios are not mutually exclusive. Although iden-
tical env sequences may reflect cellular proliferation, without inte-
gration site analysis, we cannot determine whether identical env 
sequences are derived from cellular clonal expansion (58). Future 
integration site analyses are needed to confirm this possibility, as 
illustrated by Patro et al. (59).

With regard to viral migration, this study found that not only 
blood but also mainly gut and lymphoid tissues can act as sourc-
es for the dissemination of HIV, which is consistent with previous 
studies, suggesting that both of these tissues are major HIV res-
ervoirs during ART (60–65). Interestingly, we also observed that 
genital tract tissues (i.e., prostate, seminal vesicles, testis) were 
potential sources of viral dispersal to other tissues. Although lim-
ited by the number of intact FL env proviruses recovered from the 
frontal and occipital lobes (5 of 6 participants), this study shows 
that viral migration occurred within the CNS (LG03 and LG04), 
between blood and the CNS (LG01, LG03, LG05, and LG08), and 
from the lymph nodes toward the CNS (LG01).

Assessing the factors that may contribute to the viral dynamics 
within and across compartments is likely to assist in developing 
strategies targeting the reservoirs; therefore, we used a GLM mod-
el to evaluate the role of viral characteristics (e.g., viral diversity, 
proportion of X4-tropic viruses, and viral divergence between 
compartments) as potential drivers of viral dispersal. Although 
these findings were limited to 6 participants and only involved 
viral population characteristics, we showed that limited viral 
divergence between compartments was strongly associated with 
viral dispersal in 3 of 6 participants. We also showed that viral dis-
persal was associated with greater viral diversity in the recipient 
(2 of 6 participants) and a lower proportion of X4-tropic viruses 
in the source (1 of 6 participants). Although these results remain 
limited and require validation in a larger cohort, they suggest that 
HIV dynamics across the body are also influenced by molecular 
characteristics of the HIV populations. Further analyses evaluat-
ing pharmacological and immunological factors in the HIV micro-
environment would be of interest.

Some PWH toward the end of their lives wanted to stop ART 
before they died. This unique situation allowed us to observe 
viral rebound and tissue repopulation in 2 participants with 
rebound viremia who voluntarily interrupted their ART 53 and 
70 days before death. Consistent with the study by De Scheerd-
er et al. (40), our phylogenetic and statistical analyses show that 
rebounding viral populations can originate from various anatom-
ical compartments with no prominent source of rebound. Also 
consistent with previous studies (66), we showed that rebounding 
HIV RNA populations were composed of intact, nearly identical 
FL env sequences, and thus we found that HIV RNA populations 
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QIAamp DNA Mini Kit (QIAGEN, catalog 51306) according to the 
manufacturer’s protocol. After extraction, precipitation was per-
formed to concentrate DNA. Concentrations of DNA were determined 
using NanoDrop One (Thermo Fisher Scientific). Levels of extracted 
HIV DNA were quantified by droplet digital PCR (ddPCR) using the 
Bio-Rad QX200 Droplet Reader (94). Copy numbers were calculated 
as the mean of 3 replicate PCR measurements and normalized to 1 
million cells, as determined by RPP30 assay (total cell count) (94, 95).

RNA extraction and quantification. RNA was extracted from blood 
plasma by layering 500–700 μL plasma on top of 200 μL 20% sterile 
filtered sucrose solution. Samples were spun at 23,500 ×g for 1 hour at 
4°C to pellet the virus. Supernatant was removed and the pellet resus-
pended in 140 μL PBS. RNA was extracted using a QIAamp Viral RNA 
Mini Kit (QIAGEN, catalog 52904) according to the manufacturer’s 
recommendation. cDNA from HIV RNA was generated using the One-
Step RT-ddPCR Advanced Kit for Probes (Bio-Rad, catalog 186-4021), 
and levels were quantified by ddPCR using the Bio-Rad QX200 Drop-
let Reader. Copy numbers were calculated as the mean of 3 replicates.

Nested PCR. To amplify single-genome FL env, DNA extract-
ed from antemortem PBMCs and postmortem tissues was diluted 
using ddPCR quantification data. This limited dilution PCR reaction 
can prevent PCR recombination and ambiguous base calls and allow 
the amplification of viral single genomes (87, 96). For HIV RNA in 
blood plasma, cDNA was generated from RNA using the SuperScript 
III First Strand Synthesis System (Thermo Fisher Scientific, catalog 
18080-051). Template cDNA and HIV DNA extracted from tissues 
were diluted until approximately 30% of the second-round reactions 
were positive for the correctly sized amplification product. Prim-
ers used for the first round were as follows: 5′-FENVouter (forward) 
TTAGGCATCTCCTATGGCAGGAA and 3′-RENVouter (reverse) 
TCTTAAAGGTACCTGAGGTCTGACTGG. First-round PCRs were 
performed using the Advantage 2 PCR Kit (Takara, catalog 639206) 
following the manufacturer’s recommendations and 10× SA buffer 
(Takara, catalog 639206). Cycling conditions were as follows: 95°C 
for 1 minute, 35 cycles of 95°C for 15 seconds, 57°C for 30 seconds, 
68°C for 3 minutes, with a final extension at 68°C for 10 minutes. 
The second-round PCRs were done using 5′-FENVinner (forward): 
GAGCAGAAGACAGTGGCAATGA and 3′RENVinner (reverse): 
CCACTTGCCACCCATBTTATAGCA. The cycling conditions were 
as follows: 95°C for 1 minute, 30 cycles of 95°C for 15 seconds, 64°C 
for 30 seconds, and 68°C for 3 minutes, with a final extension at 68°C 
for 10 minutes. PCR cleanups were performed on the second-round 
reaction products using a QIAquick PCR Purification Kit (QIAGEN, 
catalog 28106). DNA was quantified using a Qubit dsDNA HS Assay 
Kit (Invitrogen, Thermo Fisher Scientific, catalog Q32854). Quality 
and integrity were measured using Genomic DNA ScreenTape (Agi-
lent Technologies, catalog 5067-5365) in combination with the 2200 
TapeStation System (Agilent Technologies, Genomic DNA Reagents, 
catalog 5067-5366).

Nextera XT library preparation. Single-genome amplicons were 
prepared for deep sequencing using the Nextera XT DNA Library 
Preparation Kit (Illumina, FC-131-1096) with indexing of 96 samples 
per run (Nextera XT Index Kit, set A FC-131-2001) according to the 
manufacturer’s protocols.

Assembly of FL HIV env proviruses. We used a custom-designed 
pipeline to recover FL env HIV sequences from the paired-end 
reads. The pipeline included a preliminary step of quality control, 

tissue mass and the settling of blood in tissues, i.e., livor mortis. 
Although we cannot completely rule out such contamination, 
our sequence analyses showed viral compartmentalization for 
all participants, which suggested that possible blood contamina-
tion did not significantly affect our analyses.

In conclusion, this study leveraged the unique Last Gift 
cohort of participants who continued or discontinued ART 
before dying, after which multiple tissues were rapidly collect-
ed at autopsy. From these samples, the study reconstructed the 
spatial dynamics of HIV across the body and found that multiple 
body compartments, especially the gut and lymphoid tissues, 
can act as hubs for dissemination of HIV and that blood is the 
likely conduit for dispersal. This study also uniquely clarified 
the HIV dynamics within the CNS and across the blood-brain 
barrier. Importantly for cure efforts, our analyses strongly indi-
cated that rebounding virus was derived from circulating reser-
voirs and that rebounding virus quickly populated deep tissue 
reservoirs throughout the body via the blood. Given the extent 
of intact FL env HIV populations throughout the body, it is like-
ly that any of the tissue reservoirs could facilitate reseeding of 
virus to the blood and thus repopulate tissue reservoirs. These 
findings might have consequences for treatment interruption 
studies, although the clinical significance is unclear (91). Thus, 
for cure efforts aimed at eradication, all such reservoirs would 
need to be cleared. Alternatively, functional cure efforts could 
focus on making circulating CD4+ T cells impervious to infection 
to prevent rebound viremia and subsequent viral dispersal and 
reseeding, although this approach would not address local viral 
reactivation and damage.

Methods

Study cohort and sampling
PBMCs and tissue samples were obtained from the first 6 PWH 
enrolled in the Last Gift cohort (92, 93). Study participants were fol-
lowed closely near the end of their lives (approximatively every other 
week, with closer intervals as death approached). During these vis-
its, participants provided: (a) detailed clinical and sociodemographic 
information before their death (use of ART, chemotherapy and other 
therapies, surgical procedures, coinfections, etc.); (b) blood samples 
while they were alive; and (c) their entire bodies after they died for 
a rapid autopsy. Clinical characteristics of the study participants are 
summarized in Supplemental Table 1 and Supplemental Figure 2.

Rapid autopsy
The Last Gift rapid autopsy protocol was designed to collect tissues 
within 6 hours of death to minimize postmortem tissue degradation. 
At the time of death, the body was rapidly transported to the UCSD 
morgue, where the team performed a complete autopsy of all organs 
to obtain tissue samples, which were either formalin-fixed and par-
affin-embedded for histological analysis or snap-frozen in liquid 
nitrogen. Fluids collected included CSF and blood drawn from car-
diac puncture.

HIV DNA quantification and sequencing
DNA extraction, purification, and quantification. Genomic DNA was 
extracted from 5 million PBMCs and snap-frozen tissues using a 
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beast.community/) (104) for all evolutionary analysis. All sequences 
were considered isochronous, i.e., branch lengths were estimated in 
units of substitutions per site. For this, a strict molecular clock was 
specified, and the clock rate was fixed to 1. The substitution process 
was described with a HKY+Γ model (105, 106), and a constant pop-
ulation size was assumed. Discrete trait analyses were performed 
using the asymmetric diffusion model (107, 108). To identify the sub-
set of migration rates that were most informative to reconstruct the 
dispersal history, we used a model averaging procedure (Bayesian 
stochastic search variable selection [BSSVS]) (107). BF support for all 
possible types of location exchanges was calculated using SpreaD3 
(https://rega.kuleuven.be/cev/ecv/software/SpreaD3) (109). BFs 
between 3 and 20, between 20 and 150, and above 150 were consid-
ered positive, strong, and decisive support, respectively (110). Esti-
mates of the posterior expected number of migration events between 
all pairs of locations (Markov jumps) were computed using stochastic 
mapping techniques (105, 111). To identify individual-level differ-
ences in within-host viral diffusion patterns, the trait analyses were 
performed on a patient-specific basis.

To investigate whether support for migration links followed from 
the relative abundance of the involved trait states, analyses were 
repeated while randomly permuting the compartment states between 
tips during the Markov chain Monte Carlo (MCMC) sampling (112), 
a technique analogous to the tip-date randomization procedure for 
testing the significance of the temporal signal (113, 114). Indeed, if the 
support for a particular migration rate persisted after randomizing the 
tip-to-location assignments, one cannot rule out the possibility that 
the support is due to sampling intensity differences. Furthermore, of 
the migration links that passed the above filter (good BF support in the 
“as is” analysis and poor BF support in the “tip-state-swap” analysis), 
only those that remained significant after accounting for the sampling 
heterogeneity were taken into account to further reduce the false-pos-
itive rate. To this end, the inclusion frequencies of the “tip-state-swap” 
analysis instead of those of the “as is” analysis were treated as the pri-
or inclusion probabilities when recomputing the BF support, hereafter 
referred to as the adjusted BF. Only the results with an adjusted BF 
with positive support (BFs ≥3) are further discussed in this study. This 
approach was also used to investigate the sensitivity of the Simmonds 
AI to the sampling heterogeneity.

Multiple MCMC chains were run for a sufficient length of time to 
ensure convergence and adequate mixing (effective sample size [ESS] 
>200), which was inspected using Tracer, version 1.7 (https://beast.
community/tracer) (115). The chains were sampled every 500,000 
generations and combined after removal of the burn-in. Maximum 
clade credibility (MCC) trees were obtained with TreeAnnotator, ver-
sion 1.10 (https://beast.community/programs) (104).

Identification of predictors of within-host spread. The GLM exten-
sion of the discrete trait model implemented in BEAST (116) was 
used to investigate the relevance of potential explanatory variables 
(predictors) to explaining the dispersal across body compartments. 
The following variables were included: (a) the number of FL intact 
env provirus recovered in each compartment to control for sampling 
bias effects (116); (b) the level of HIV DNA (ddPCR gag copy/106 cells 
for all antemortem PBMC and postmortem tissue samples) or level of 
HIV RNA for antemortem blood plasma samples (number of copies/
μL); (c) viral diversity, estimated using the average pairwise genetic 
distance between each sequence; and (d) the proportion of X4-tropic 

which involved trimming reads for PHRED quality above or equal 
to 30 and removal of Illumina adapters. Next, overlapping identical 
paired forward and reverse reads were merged and premapped to the 
HXB2 reference genome. Cleaned reads were remapped to the de 
novo assembled near–FL env sequence before generation of the final 
consensus sequence. The minimum acceptable coverage was set to 
10,000 reads. To identify mixtures (i.e., suggesting multiple amplified 
HIV templates), all generated FL env contigs were screened. Mixtures 
were identified on the basis of read coverage and variant calling. Con-
tigs with evidence of SNPs with a frequency of greater than 1% were 
considered mixtures and excluded from further analyses.

Test for cross-contamination. A maximum likelihood (ML) phyloge-
ny including all sequences from the 4 participants was estimated using 
IQ-TREE (http://www.iqtree.org/) with the general time-reversible 
(GTR) substitution model (97) to test for contamination, which would 
show as intermixed clustering of taxa between participants.

Identification of defective or hypermutant sequences. FL envelopes 
containing large deletions (>100 bp) were considered defective (86, 
98). Deleterious stop codons were identified using the Gene Cutter 
tool (Los Alamos HIV Database; https://www.hiv.lanl.gov/content/
sequence/GENE_CUTTER/cutter.html). Any contigs containing a 
stop codon were considered defective. APOBEC-induced (apolipo-
protein B mRNA-editing enzyme, catalytic polypeptide-like–induced)  
G–A hypermutations were identified using the Los Alamos HIV 
Database Hypermut 2 program (https://www.hiv.lanl.gov/content/
sequence/HYPERMUT/hypermut.html) and the participant’s con-
sensus sequence (99, 100). Proviruses with a number of mutations 
significantly higher than those in the participant’s consensus (P < 
0.05, Fisher’s exact test) were considered hypermutant and were not 
included in the downstream analyses described below.

Sequence analyses
Identification of identical FL env sequences. To determine the sequences 
that were greater than or equal to 99% or 100% genetically identical, 
we used the ElimDupes tool from the Los Alamos HIV database, with 
a genetic identity threshold of 99% or greater or 100% as the analy-
sis parameter (101). A sequence was classified as identical if it was a 
100% match against another sequence sampled from the same partic-
ipant. Once identified, the proportion of identical and nearly identical 
sequences was calculated by dividing the total number of sequences 
classified as identical/nearly identical for each participant or compart-
ment by the total number of sequences for that group.

Diversity and divergence. Viral diversity was defined as the average 
pairwise genetic distance between sequences from a compartment 
using the TN93 correction for multiple hits (46). Viral divergence was 
assessed by computing the mean pairwise distance (TN93) between 
viral populations sampled across anatomical sites.

Coreceptor tropism. Viral tropism of each variant was inferred from 
the V3 amino acid sequence using Geno2pheno (https://coreceptor.
geno2pheno.org/) (102). We applied a conservative 10% false-positive 
rate threshold for coreceptor CXCR4 usage on the basis of the Euro-
pean Consensus Group’s recommendation on clinical management of 
HIV-1 tropism testing.

Viral migration. Before evaluating the within-host migration 
processes, the level of spatial structure was quantified using the 
Simmonds association index (AI) implemented in BaTS, version 1.0 
(103). We used the BEAST software package, version 1.10 (https://
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the variables included in the GLM model that was evaluated. When 2 
variables showed a collinearity coefficient of 0.8 or higher, the analy-
sis was repeated with only 1 variable in the model.

Statistics
Multivariable logistic regression was carried out in R, version 3.6.1, 
applying the function GLM and binomial link function, and was used 
to compare the proportion of sequences that were intact and identical 
(clonal). The independent variables in these analyses were participant 
and anatomical location. For the continuous average pairwise dis-
tance (diversity) outcome, multiple linear regression was used, with 
assumptions of constant variance and normality of residuals checked 
and met. Mixed models for both binary and continuous outcomes 
were analyzed with glmer and lmer from the lme4 R library. These 
mixed models used participant as the grouping factor and included 
a random term for either intercept alone, or intercept and compart-
ment. Given the sparse nature of the data, all mixed models had diffi-
culty converging with poor model fits. As such, the results and P values 
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